Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Med Case Rep ; 17(1): 177, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2313753

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 continues to threaten public health. The virus is causing breakthrough infections in vaccinated individuals. Also, scarce information is available about cutaneous manifestations after severe acute respiratory syndrome coronavirus 2 infection. CASE PRESENTATION AND FINDINGS: A case of a triple-vaccinated (Pfizer) 37-year-old Hispanic American (Colombian) male who developed urticaria after Omicron BA.5.1 severe acute respiratory syndrome coronavirus 2 breakthrough infection is described. Virus isolation and whole genome sequencing along with immune and molecular assays were performed. Dermatological manifestations (skin rash and urticaria) after Omicron BA.5.1 infection were observed. Sequence analysis of the Omicron BA.5.1 isolate also revealed several important mutations. Hemogram analysis revealed leukocytosis and neutrophilia. Serology testing revealed anti-spike immunoglobulin G serum titers but negative detection of immunoglobulin M at 10 days after symptom onset. Anti-nucleocapsid, anti-spike 1 immunoglobulin G, anti-spike trimer, and anti-receptor-binding-domain immunoglobulin G and immunoglobulin E sera were detected at different titers 10 days after symptom onset. Several serum levels of chemokines/cytokines (Interferon-α, interferon-γ, interleukin-12/interleukin-23p40, interleukin-18, interferon gamma-induced protein-10, monocyte chemoattractant protein-1, monokine induced by gamma, macrophage inflammatory protein-1α, chemokine (C-C motif) ligand-5 , tumor necrosis factor-ß1, Tumor necrosis factor-α) were detected, but interleukin-2, interleukin-4, interleukin-6, interleukin-8, and interleukin-17A were below the limit of detection. INTERPRETATION AND CONCLUSIONS: To our knowledge, this is the first study describing skin effects of a severe acute respiratory syndrome coronavirus 2 Omicron BA.5 variant breakthrough infection in a triple-vaccinated patient in Colombia. Several important mutations were found in the spike glycoprotein of the virus isolated; these mutations are associated with immune evasion and changes in antigenic properties of the virus. Physicians overseeing coronavirus disease 2019 cases should be aware of the potential skin effects of the infection. Pathogenesis of severe acute respiratory syndrome coronavirus 2 infection and its association with proinflammatory cytokines and chemokines may enhance the development of urticaria and other skin manifestations in immunized individuals. However, further studies are needed to better understand the complexity of coronavirus disease in such situations.


Asunto(s)
COVID-19 , Urticaria , Masculino , Humanos , Adulto , Urticaria/etiología , Piel , Citocinas , Anticuerpos Antivirales
2.
Microbiol Spectr ; 11(3): e0534622, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2317870

RESUMEN

The first 18 months of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in Colombia were characterized by three epidemic waves. During the third wave, from March through August 2021, intervariant competition resulted in Mu replacing Alpha and Gamma. We employed Bayesian phylodynamic inference and epidemiological modeling to characterize the variants in the country during this period of competition. Phylogeographic analysis indicated that Mu did not emerge in Colombia but acquired increased fitness there through local transmission and diversification, contributing to its export to North America and Europe. Despite not having the highest transmissibility, Mu's genetic composition and ability to evade preexisting immunity facilitated its domination of the Colombian epidemic landscape. Our results support previous modeling studies demonstrating that both intrinsic factors (transmissibility and genetic diversity) and extrinsic factors (time of introduction and acquired immunity) influence the outcome of intervariant competition. This analysis will help set practical expectations about the inevitable emergences of new variants and their trajectories. IMPORTANCE Before the appearance of the Omicron variant in late 2021, numerous SARS-CoV-2 variants emerged, were established, and declined, often with different outcomes in different geographic areas. In this study, we considered the trajectory of the Mu variant, which only successfully dominated the epidemic landscape of a single country: Colombia. We demonstrate that Mu competed successfully there due to its early and opportune introduction time in late 2020, combined with its ability to evade immunity granted by prior infection or the first generation of vaccines. Mu likely did not effectively spread outside of Colombia because other immune-evading variants, such as Delta, had arrived in those locales and established themselves first. On the other hand, Mu's early spread within Colombia may have prevented the successful establishment of Delta there. Our analysis highlights the geographic heterogeneity of early SARS-CoV-2 variant spread and helps to reframe the expectations for the competition behaviors of future variants.


Asunto(s)
COVID-19 , Humanos , Teorema de Bayes , COVID-19/epidemiología , Colombia/epidemiología , SARS-CoV-2/genética
4.
Int J Infect Dis ; 117: 356-360, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-1729823

RESUMEN

Detection and epidemiologic characterization of infectious disease outbreaks are key for early identification and response to potential pandemic threats. The rapid global spread of severe SARS-CoV-2 in 2020 highlighted the critical role of diagnostics in understanding the epidemiology of the virus early in the pandemic. As a natural extension of Abbott's work in diagnostics, virus discovery, and virus surveillance, the Abbott Pandemic Defense Coalition (APDC) was launched in early 2021. The APDC is a global multisector scientific and public health partnership whose primary objective is the early detection and mitigation of infectious disease threats of pandemic potential. As of January 2022, the APDC network has partners on 5 continents including academic institutions, governmental, and nongovernmental organizations. A novel element of the APDC is the capacity for early development and rapid deployment of scalable, quality diagnostics targeting newly identified pathogens of pandemic potential.


Asunto(s)
COVID-19 , Pandemias , COVID-19/epidemiología , COVID-19/prevención & control , Brotes de Enfermedades , Humanos , Pandemias/prevención & control , Salud Pública , SARS-CoV-2
5.
Nature ; 603(7902): 687-692, 2022 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1641974

RESUMEN

The recent emergence of B.1.1.529, the Omicron variant1,2, has raised concerns of escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in preclinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of several B.1.1.529 isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. Despite modelling data indicating that B.1.1.529 spike can bind more avidly to mouse ACE2 (refs. 3,4), we observed less infection by B.1.1.529 in 129, C57BL/6, BALB/c and K18-hACE2 transgenic mice than by previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease and pathology with B.1.1.529 were also milder than with historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from the SAVE/NIAID network with several B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.


Asunto(s)
COVID-19/patología , COVID-19/virología , Modelos Animales de Enfermedad , SARS-CoV-2/patogenicidad , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Cricetinae , Femenino , Humanos , Pulmón/patología , Pulmón/virología , Masculino , Mesocricetus , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Carga Viral
6.
PLoS One ; 16(9): e0257474, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1443840

RESUMEN

Timely and accurate diagnostics are essential to fight the COVID-19 pandemic, but no test satisfies both conditions. Dogs can scent-identify the unique odors of volatile organic compounds generated during infection by interrogating specimens or, ideally, the body of a patient. After training 6 dogs to detect SARS-CoV-2 by scent in human respiratory secretions (in vitro diagnosis), we retrained 5 of them to search and find the infection by scenting the patient directly (in vivo screening). Then, efficacy trials were designed to compare the diagnostic performance of the dogs against that of the rRT-PCR in 848 human subjects: 269 hospitalized patients (COVID-19 prevalence 30.1%), 259 hospital staff (prevalence 2.7%), and 320 government employees (prevalence 1.25%). The limit of detection in vitro was lower than 10-12 copies ssRNA/mL. During in vivo efficacy experiments, our 5 dogs detected 92 COVID-19 positive patients among the 848 study subjects. The alert (lying down) was immediate, with 95.2% accuracy and high sensitivity (95.9%; 95% C.I. 93.6-97.4), specificity (95.1%; 94.4-95.8), positive predictive value (69.7%; 65.9-73.2), and negative predictive value (99.5%; 99.2-99.7) in relation to rRT-PCR. Seventy-five days after finishing in vivo efficacy experiments, a real-life study (in vivo effectiveness) was executed among the riders of the Metro System of Medellin, deploying the human-canine teams without previous training or announcement. Three dogs were used to examine the scent of 550 volunteers who agreed to participate, both in test with canines and in rRT-PCR testing. Negative predictive value remained at 99.0% (95% C.I. 98.3-99.4), but positive predictive value dropped to 28.2% (95% C.I. 21.1-36.7). Canine scent-detection in vivo is a highly accurate screening test for COVID-19, and it detects more than 99% of infected individuals independent of key variables, such as disease prevalence, time post-exposure, or presence of symptoms. Additional training is required to teach the dogs to ignore odoriferous contamination under real-life conditions.


Asunto(s)
COVID-19/diagnóstico , Odorantes/análisis , Feromonas/análisis , Animales , Perros , Femenino , Humanos , Masculino , Tamizaje Masivo , Valor Predictivo de las Pruebas , SARS-CoV-2/patogenicidad , Sensibilidad y Especificidad , Compuestos Orgánicos Volátiles , Perros de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA